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The paper considers corona discharge problems with multiple conductors, such as those appearing in some electrostatic precipitators.
A common, precise condition is identified in which previous approaches proposed in literature fail. For dealing with these conditions,
a novel formulation of the problem is proposed. Moreover, a Newton-Raphson scheme is defined for iteratively solving a non-standard
Petrov-Galerkin Finite Element discretization of the problem. The presented approach is validated on a benchmark for which an
analytical solution is known.
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I. INTRODUCTION

Corona discharge, such as the one appearing in electrostatic
precipitators, is commonly modeled by coupling electrostatic
and electrokinetic problems [1], [2]. Such problems are math-
ematically formulated by a coupled Poisson’s problem in the
electrical potential variable and an advection problem in the
electric charge density variable. The numerical solution of such
problems is difficult, because of the strong coupling of the
problems in part due to the assumed boundary condition for the
advection problem, known as Peek’s boundary condition [2].
In order to overcome these difficulties various approaches have
been proposed in literature [2]. In this paper the general case
of multiconductor electrostatic precipitators is considered. In
this case firstly it is shown that the formulation of the coupled
electrostatic and electrokinetic problems, proposed in literature
and commonly adopted in practice, does not guarantee the
existence of a unique solution. This problem corresponds to
the fact that the numerical approaches reported in literature
discretizing the coupled Poisson’s and advection problems
fail exactly in this situation. Secondly, a proper boundary
condition for the advection problem is defined in such a way
to solve the uniqueness problem. For this modified problem
a numerical approach based on a nonstandard Petrov-Galerkin
Finite Element Method discretization is proposed.

II. PROBLEM FORMULATION

Corona discharge in multiconductor electrostatic precipita-
tors is usually modeled by coupling the electrostatic problem to
an electrokinectic one in a region Ω. The electrostatic problem
is formulated as

∇ · (−ε∇ϕ) = ρ (1)

in which ϕ is the electric potential, ε is the permittivity and
ρ is the electric charge density. Boundary conditions for this
problem are usually of mixed Dirichlet and Neumann type, in
the form

ϕ = ϕs in Σϕ (2)

−ε∂ϕ
∂n

= 0 in Σd (3)
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Fig. 1. Multiconductor electrostatic precipitator geometry.

in which Σϕ and Σd are disjoint surfaces, the union of which is
the complete boundary of the problem ∂Ω. The electrokinetic
problem is formulated as

∇ · (−µρ∇ϕ) = 0 (4)

in which µ is the charge mobility. (1) and (4) are coupled due to
the presence of ϕ and ρ in both equations, and (4) is nonlinear
due to the product of ∇ϕ with ρ. Boundary condition for this
problem is Peek’s condition, i.e. setting the electric field normal
to the emitter surface Σe according to Peek’s formula

− ∂ϕ

∂n
= ep in Σe (5)

in which the normal vector is considered pointing outward with
respect to the emitter surfaces, and ep is Peek’s value.

It is well known that an advection problem requires one
boundary condition on each characteristic line. However, while
in two-conductor electrostatic precipitators, Peek’s condition
on the emitter surface exactly guarantees such condition, in
multiconductor electrostatic precipitators this, in general, does
not hold. For instance, in Fig. 1, it is evident that along the
characteristic lines starting from the surface Σρ, on which
−∇ϕ · n > 0, no condition is set in this way. This problem is



straighforwardly solved by introducing the boundary condition

ρ = ρs in Σρ, (6)

in which ρs can be chosen as 0, since no charge is injected
at boundary surfaces different from the emitter. In this way,
surfaces Σe and Σρ are disjoint surfaces, the union of which
is the set of all boundary points at which −∇ϕ · n > 0.
By imposing (5), (6), one condition is correctly set for each
characteristic line of the advection problem.

III. NUMERICAL METHOD

In some electrostatic precipitators problems [2], boundary
condition (5) is not imposed directly and instead boundary
condition (6) is used also on Σe. In this case an iterative
algorithm is usually adopted in which the coupled electrostatic
and electrokinetic problems are separately solved until conver-
gence. This approach is not always satisfactory due to the well-
known convergence issues of simple iteration schemes. If on
the other hand Peek’s boundary condition is to be imposed di-
rectly other issues arise since (5) introduces additional coupling
between the electrostatic and electrokinetic problems. All the
above considerations lead to the following weak formulation
for the electrostatic problem∫

Ω

∇ϕ′ · ε∇ϕ+

∫
Σe

ϕ′εep =

∫
Ω

ϕ′ρ (7)

∀ϕ′|ϕ′ = 0 in Σϕ \ Σe, ϕ = ϕs in Σϕ

This formulation is nonstandard since the test functions are not
required to vanish on the whole Dirichlet boundary for ϕ but
only where Peek’s condition is not set. The weak formulation
for the electrokinetic problem reads∫

Ω

∇ρ′ · µ∇ϕρ+

∫
Ω

∇ρ′ · ω∇ρ+

∫
Σϕ\(Σe∪Σρ)

−ρ′µ∂ϕ
∂n

ρ = 0 (8)

∀ρ′|ρ′ = 0 in Σe ∪ Σρ, ρ = ρs in Σρ

Also this formulation is nonstandard since the test functions
are required to vanish not only on the Dirichlet boundary for
ρ but also where Peek’s condition has been set. Furthermore,
with respect to (4) a stabilization term containing a parameter
ω has been added.

A Newton-Raphson approach can be used to solve the
coupled system formed by (7) and (8), thus at the k-th iteration
estimates ϕk, ρk are assumed, and more accurate estimates
ϕk+1 = ϕk + δϕ, ρk+1 = ρk + δρ are determined by solving
the linearized coupled system given by∫

Ω

∇ϕ′ · ε∇δϕ−
∫

Ω

ϕ′δρ =

−
∫

Ω

∇ϕ′ · ε∇ϕk +

∫
Ω

ϕ′ρk −
∫

Σe

ϕ′εep (9)

∀ϕ′|ϕ′ = 0 in Σϕ \ Σe, δϕ = ϕs − ϕk in Σϕ
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Fig. 2. FEM vs. analytical solution on benchmark problem∫
Ω

∇ρ′ · µρk∇δϕ+

∫
Ω

∇ρ′ · µ∇ϕkδρ+

∫
Ω

∇ρ′ · ω∇δρ−∫
Σϕ\(Σe∪Σρ)

ρ′µρk
∂δϕ

∂n
−
∫

Σϕ\(Σe∪Σρ)

ρ′µ
∂δϕk

∂n
δρ = −

∫
Ω

∇ρ′ · µ∇ϕkρk

+

∫
Ω

∇ρ′ · ω∇ρk +

∫
Σϕ\(Σe∪Σρ)

ρ′µ∂ϕk/∂nρk (10)

∀ρ′|ρ′ = in Σe ∪ Σρ, ρ = ρs in Σρ

At each iteration the Σρ surface is approximated by the Σkρ
surface, consisting of all boundary points, distinct from Σe,
such that −∇ϕk · n < 0. Fig. 2 shows the results obtained
by the proposed approach on a coaxial cylindrical benchmark
problem, described in [4], for which an analytical solution is
available.

IV. CONCLUSIONS

The paper proposes a novel formulation to address corona
discharge problems with multiple conductors, such as those
appearing in some electrostatic precipitators. The method can
cope, through (6), with configurations in which previous ap-
proaches proposed in literature fail. From the numerical point
of view, a Newton-Raphson scheme is introduced for iteratively
solving a non-standard Petrov-Galerkin Finite Element dis-
cretization of the problem. The presented approach is validated
on a benchmark problem for which an analytical solution
is known. The extended version of the paper will provide
further details regarding the formulation, the stabilization of
the advection equation, the use of first-order and second-order
elements and test problems of industrial complexity.
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